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AnbHoTanua—B crarbe M3TaraloTcA pe3yAbTATH UYMCIEHHOTO PelleHMA pAja 3aja4 Teopuu
TOTPAHAYHOTO CIIOA HECKMMAEMOH MUKOCTH N CRUMAaeMoro rasa. C nmoMompbio CTaTHYeCKoro
2JIeKTPOMHTErPAaTOpPa MOJNYYeHH pellennA 3ajad 00 oOTeKaHWM IIACTMHH OHOPOJHHIM
TIOTOKOM BSI3KOM HECHMMAEMOM KUKOCTH ¢ TIOCTOAHHON M, MepeMeHHON! BABKOCTBbIO, 00
MCTEYEHHH ILIOCKOM CTPYM HeCKUMaeMOil JKMAKOCTH M3 HAcaJKa KOHEYHOro pasmepa, 0
PACIPOCTPAHEHUH MOJAYOTPAHNYEHHON CTPYH HECIKMMAEMOH MMIKOCTH BROJL WHIMHAPA H
MOrPAHUYHOM CJI0€ B C:KUMAEMOM Ta3e Ha HeMPePHBHOM| ABMKYIIEHCA NIIOCKOH MOBEPXHOCTH.
PeayabraThl pelieHa HILTIOCTPUPYIOTCA TpaduKamMu.

NOMENCLATURE
U,3, longitudinal and transverse com-
ponents of velocity ;
X, ¥, Cartesian co-ordinates;
v, kinematic viscosity ;
0, density;
V, electrical potential;
T temperature;
0, dimensionless temperature;;
k, thermal diffusivity;
l, half-width of channel;
R,R,, resistances;
h, enthalpy;
&n, Dorodnitsyn variables;
M,, Mach number.
Subscripts
w, wall;
0, far away from the wall.

1. INTRODUCTION

THE ANALYTICAL solution of the boundary-layer
equations can only be obtained in some cases.
This is explained by insuperable (at least
nowadays) mathematical difficulties due to
integration of non-linear partial differential
equations.

Various numerical solutions are therefore
of great interest. Among them a finite-difference
method has been widely used, especially recently,
which makes it possible to obtain a solution
as accurate as required by comparatively simple
calculations. However, when solving the sets
of equations with various non-linearities, com-
plex boundary conditions, certain singularities,
etc., it is not always possible to find a logically
simple algorithm of calculation, which makes
programming rather difficult.

Therefore in addition to the digital units (and
sometimes together with them) it is advisable
to use analogue computers whose operation is
based on a mathematical modelling of the
initial equations. In this paper the results are
discussed of the solution of some problems in
boundary-layer theory with the aid of statical
clectro-integrators designed at the Kazakh
State University [1-3].*

Using the statical electro-integrators, the
solution is performed in a grid region step by
step, which allows one to control the calcula-
tions, to stop them, or introduce alterations, etc.

* Statistical electro-integrator, type “COW-I” is at
present produced by Kazakh Council of National Economy.
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This makes it possible to pass easily from one
scheme of computation to another, to choose
optimum variants, to watch the stability of the
computations, etc.

The principle of the integrator operation is
based on mathematical modelling with the
help of an electric system of differential equa-
tions written in terms of finite differences. The
solution is performed in discrete co-ordinates
and the grid mesh chosen with an eye on the
solution stability. The integrator {Fig. 1} con-
sists of a number of discrete functional potentio-

meters of great resolving power. The change of »

equation coefficients is programmed by the
potentiometers before the computationisstarted.
The terminals of the potentiometers are fixed
on a common panel of commutation. The calcu-
lation is performed by moving one solving
element over the points of spatial region
represented in the integrator by potentials. A
solving element consists of several resistors
(sometimes capacitors) connected in a pre-
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Fi6. 1. Electric circuit of statical electro-integrator. n,, n,, n3
are functional potentiometers; R, Ry, are resistors of solving
element ; ZH, zero galvanometer; TP, test plug; P, plug.
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defined circuit. The solution is sought on the

same panel of commutation by the zero-method.
Some solutions of problems obtained on

statical electro-integrators are given below.

2. VISCOUS INCOMPRESSIBLE FLOW AROUND A PLATE
The problem is written mathematically in the form of the following set of differential equations

and boundary conditions

ou ouU o*U oUu 09
U—+8%—=v— — 4+ —=0;
6x+ dy v@y 8x+6y 0; )
U=38=0 at y=0, U=U,, %—(J{=0 at y = oo. (2)

The corresponding system of finite difference dimensionless equations is of the form:

a
Un,k+1 -

Ax

i=

where

_ Un,k+l - Un,k

N ]

b=

b

Upe v 1 1 1IN 1
= K;z‘az E(Un—l,k - 2Un,k + Un+1,k) - EZ Um(Un—l,k - Un+1,k)’
- i

i=1

l9n,k+1 = ‘gn,k + Un,k - (3)

Un,k+ 1>

Un—l,k - Un+l,k,
N 3

N = 0-001 is the smallest value of the function when the change of the coefficients is taken into
account. Equations (3) are written allowing for the fact that the region of the variation of the function
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is divided into two grids. The first is a fixed one with a mesh of Ax # Ay selected from the stability
conditions of the solution, the second (mobile) has a mesh of Ax = Ay.
The equality

a b
1 12 : 1 1 ,
Viker — Vi = m'a‘ vi(lln—l,k =2Vt Vasi ) — AEZ ViVeik = Vas1,0 (4
=1

i=1

is valid for the integrator scheme (Fig. 1).
The comparison of equations (3) and (4) yields the conditions of modelling

vAx
2\72+R/R0 Z Z 2 Z zTy"' )

Conditions (5) are satisfied on the integrator (before the solution starts) by setting the necessary
ratio between the resistors of a solving element R/R,, by programming on the potentiometers the
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FiG. 2.
(a) Development of the velocity profile when incompressible viscous fluid is flowing around a plate. Curve 1
is the initial profile. Profile 5 and the following ones (not shown in the Figure) are similar profiles.
(b) Comparison of a similar proﬁle obtained by the integrator (points) with that of Blasius (solid curve).
(c) Similar velocity profiles in boundary layer for water flow around a plate. 1.—T, = 80°C, T, = 20°C;
2—T, =20°C, T, = 80°C.
(d) Similar velocity profiles in boundary layer for lubricating oil flow around a plate. 1.—T, = 90°C, T, =
50°C; 2—T,, = 50°C, T, = 90°C.
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functional dependences F, = f(U) and F, = f(§/U) and by an appropriate selection of the supply
current for the potentiometers.

The results of the solution are presented in Figs. 2{a) and 2(b). Figure 2(a) shows the development
of the velocity profile up to the onset of similarity. In Fig. 2(b} the curve corresponds to the similar
velocity profile obtained by Blasius [4 ], the points correspond to the solution found on the integrator.

3. UNIFORM LIQUID FLOW OF VARIABLE VISCOSITY AROUND A PLATE

Assuming that all the properties except viscosity* are constant, the initial system of equations
and boundary conditions can be written in the form

au sU & [ oU oU 08 .
U 9% =5 (3 “ay)’ Tyl ©
U oT oT orT
= S = b4 = 1 t -~ N e P —= k._._._’..w,
U 0 at y =0, U=U_, & 0 at y = o Uax + Say e
(7

T =T, at y=0, T=T, at y = oo,

Equations (6) and (7) in an explicit, finite difference form and solved for the unknown functions,
will be written:

a

b
Ax 1 111 1
Up kvt :A}?az a[gz VilUps1x — Und) “EZ ViU, — Un—i,k{l
; =1

i=1 =1

d

Ax 1 S
+ Upp — E&Z L—;i(Un-i- e~ Un i (8)

i=

— I
i1 =i+ U — Upirtr

!
Ax 1 1
Oprs1 = ‘Amjz E(9n+l,k =20, + 0411

i=t

Ax 1 3,
+ gn,ic - K};?Z a(gwfri,k - gn,k}a (9}

where
_T-T,
T, -T,)

One can write for the integrators:

a B b
1 1 z : 1 lz : 12 :
Vn,k+1 :m; E[]} Vi(Vn+1.k““ Vn,k)"; Vi('/;x,k‘ I/n—l‘k)

i=1 i=1

Prg, == ! {Prandt] number).

0 T

+ Vo — AWV~ Voidy (10}

* In these calculations the temperature dependence of viscosity found experimentally [6] is used.
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s
1 1 1
Vik—1 = E‘TR’_/R‘;SZ "I'/;(Vn+1,k =2kt Vemi W+ Vo — BVooy ko — Vo) (11)

=1

We find the conditions of modelling by comparing equations (8) and (10}, (9) and (11):

Ax 1 : 1 1 b 1
— bt - V.=_
Ay 2+R/Ro : , Ot: Vi b: ,' ﬁ: ,V
i=1 i= 7= 1

1 1 Ax 1

bl Vo=_ 4 i

cz : oy Z ,K’ Ayd: :

i=1 =1
Ax 1 Ax1X7 8 2

Ay*Pr, 2+ R/R, Ay f U, (

e <h  aei<i (13
U Ay* Pr, Ay*u

should obviously be observed (both in this and other cases) to satisfy the stability conditions of

solution [5].

In Fig. 2 (c) are shown similar velocity profiles in a boundary layer formed when hot (curve I)
and cold (curve 2) plates are in a uniform flow. The point of contraflection of the curve 2 is a specific
feature of these profiles. Similar curves are given for lubricating oil in Fig. 2(d). In this case the
velocity profile deformation is still more vividly expressed on a cold plate. Temperature fields are
calculated for the same temperatures of the plate and flow in a boundary layer (Fig. 3a). The com-
parison of the curves obtained for velocity profiles with those in reference [5] shows satisfactory

agreement.,

Inequalities

B

4. PLANE INCOMPRESSIBLE JET FLOWING OUT OF A NOZZLE OF FINITE DIMENSION

The equations and boundary conditions which describe the distribution of submerged plane-
parallel jet flow out of a flat tube 2/ wide with a parabolic initial profile are of the form
ou oUu U ou 03
— e 4= 14
0x Bay sayz’ 5x+6y o (14
y<-—1 y>+1 U=29;
* x_o{“‘l<5’<+i U= Uyl - y*/P),

at x>0 = at y=10

U=0,

Q%=0 at y= + oo.
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FiG. 3.
(a) Similar temperature profiles in boundary layer for water flow around a plate. 1.—T,, = 80°C, T, = 20°C;
2—T, =20°C, T, = 80°C.
(b) Development of initial (1) parabolic velocity profile in a jet flowing out of a flat tube (curve 5 represents

the similar profile).
(c) Comparison of theoretical similar profile U/U, = — tanh® ¢ (curve 1) with that calculated by the

integrator {curve 2).
(d) Velocity distribution at the outflow from an annular channel along a coaxial cylindrical rod. 1 is the

initial profile. 5 is profile corresponding to the similar solution.

(c}

On using the methods similar to the ones discussed above, one can find the modelling conditions
for the integrator and obtain the solution of the system of equations (14).

In Fig. 3(b) the development of the initial parabolic velocity profile is shown. The comparison
of the theoretical similar profile (U/U,,) = | — tanh? ¢ [4] and that obtained by the integrator is

illustrated in Fig. 3(c).

5. PROPAGATION OF A SEMI-INFINITE JET ALONG A CYLINDER
The result of the solution of the initial system of equations with appropriate boundary conditions

yU  g0U _U 13U aU a3 9

0x dy  oy* y oy ox Oy vy
oU

U——*g;—

(15)

U=39=0 at y=0, 0 at y—- w
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{a) Velocity profiles (U/U,} at (1, /h,) = 4 (Pr = 0-72). 1.—n = D:6; 2—»n = 08; 3.—n = 10 {the broken
line represents the theoretical solution forn = 1).

(b} Velocity profiles (U/U,) at (h,/h,} = § (Pr = 0-72). L—n = 0-6; 2—n = 08 (the broken line represents
the theorstical solution for n = 1).

(c} Enthalpy profiles at (h,/h,) = 4 (Pr = 0-72). 1 = 0-6; 2—n = 0-8; 3.—n = 1-0 (the broken line
represents the theoretical solution for n = 1).

(d) Enthalpy profiles at (h,/h,) = (Pr = 0-72). L—n = 06; 2—n = 0-8 (the broken line represents the
theoretical solution for n = 1).

is given in Fig. 3(d) which illustrates the development of the initial velocity profile before the onset
of similarity.

6. BOUNDARY LAYER IN COMPRESSIBLE GAS ON A MOVING FLATE PLATE

This problem was studied theoretically for incompressible fluid in papers [6, 7]. In a boundary
layer of compressible gas on a continuous flat surface the flow is described by solving the dimension-
less equations

oU 08U 8 [, ,0U U 48
bl bt ot Sl =0,
Vet Yo (h 5:»;)’ 3 "o

oh =oh 1 8, 0h s _,<6U 2
b’ DA § Tb il TS S AR il |
U&f 8617 Pr 611<h 6;1) k Mo on

(16)
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where

v

o -
'?»+p9, é=x, nzj‘ﬁ—dy

gzUé; -

{¢ and n are Dorodnitsyn variables) with boundary conditions

U =1, h = h, at =20
U =0, %—l’jz(), h=1, gg=0 at n = 0.

The solution is obtained by the methods already described. In Figs. 4(a) and 4(b) the velocity
profiles U/U, are shown for various values of the parameter n in the physical plane x, y. Similar
curves are given for enthalpy in Figs. 4{c) and 4(d).

As seen from the above examples, the method proposed for the solution of the boundary-layer
theory problems gives qualitatively correct results which are in most cases, sufficiently close to the
accurate results obtained by other methods. If necessary the accuracy of the solution can be increased
by changing to a smaller grid-mesh. This can readily be done on the integrator and only an increase
in the volume of the calculations is involved.

Thus the application of the mathematical modelling method allows the solution of the initial
system of partial differential equations for boundary layer to be found, without using any transforma-
tions to simplify the system.
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Abstract—Results are given of the numerical solution of some problems of boundary-layer theory for

incompressible fluid and compressible gas. By a statical electro-integrator the solutions are obtained to

the problems of uniform incompressible fluid flow with constant and variable viscosity around a plate;

of incompressible plane jet overflow from a nozzle of finite dimension; of propagation of semi-infinite

incompressible fluid jet along a cylinder; and of a boundary layer in compressible gas on a continuous
moving flat plate. The results are presented in a graphical form.

Zusammenfassung—Von einigen Problemen der Grenzschichttheorie fiir inkompressible Fliissigkeit und

kompressibles Gas sind die Frgebnisse einer numerischen Losung angegeben. Mit Hilfe eines Elektroin-

tegrators wurden die Losungen fiir folgende Probleme erhalten: Gleichmaissige, inkompressible Strémung

um eine Platte bei konstanter und verdnderlicher Zihigkeit; inkompressibler, ebener Strahlaustritt aus

einer Diise endlicher Dimension; Fortschreiten eines halbunendlichen, inkompressiblen Fliissigkeits-

strahls entlang eines Zylinders und Grenzschichtprobleme an einer kontinuierlich bewegten ebenen Platte
in kompressiblem Gas. Die Ergebnisse sind grafisch dargestellt.



