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AHEOT~~H~-B cTaTbe UanaraloTcn pe3ynbTaw wicneworo pemeHwi pfrfia sagas Teopw 
norpaHnworOcnofl Hecmamaemofi IKUAKOCTU acmumae~oro raaa. C noMoI4bro CTaTP4eCKOrO 
3seKTpouHTerpaTopa nonyqeHbI peluewfl 3aAa'l 06 06TeKaHuU nJlaCTUHbl OAHO~OAHI~M 

~OTOKOM BRBKO%i HeCHWMaeMOi IKU~KOCTU C nOCTORHHOfi U, nepeMeHHOi BRBKOCTLIO, 06 
UcTeYeHun nJIOCKOlt CTpyu HecmAMaeMoR ~U~K~CTU na HacaaKa KOHeYHOrO paanfepa, 0 

paCnpOCTpaHeHuU nOJIyOrpaHuYeHHOfi CTpyu HeCHcuMaeMOti HWWKOCTU BJJOJlb lWlUH~pa U 

norpaHwiHoM cnoe~cmumaemotd ra3eHaHenpepblBHo~~Bumy~ettc~nnoc~ol noBepxaocTu. 

PesynbTaTarperueHuR unn~c~pupy~o~cn rpa$uKamu. 

NOMENCLATURE 

u, 9, longitudinal and transverse com- 
ponents of velocity ; 

x, Y, Cartesian co-ordinates ; 

V, kinematic viscosity ; 

PT density ; 

K electrical potential ; 

IT: temperature ; 

0, dimensionless temperature ; 

k thermal diffusivity ; 

1, half-width of channel ; 

R, Ro, resistances ; 

h, enthalpy ; 

5, % Dorodnitsyn variables ; 

MW Mach number. 

Subscripts 
W, wall ; 
00, far away from the wall. 

1. INTRODUCTION 

THE ANALYTICAL solution of the boundary-layer 
equations can only be obtained in some cases. 
This is explained by insuperable (at least 
nowadays) mathematical difficulties due to 
integration of non-linear partial differential 
equations. 

Various numerical solutions are therefore 
of great interest. Among them a finite-difference 
method has been widely used, especially recently, 
which makes it possible to obtain a solution 
as accurate as required by comparatively simple 
calculations. However, when solving the sets 
of equations with various non-linearities, com- 
plex boundary conditions, certain singularities, 
etc., it is not always possible to find a logically 
simple algorithm of calculation, which makes 
programming rather difficult. 

Therefore in addition to the digital units (and 
sometimes together with them) it is advisable 
to use analogue computers whose operation is 
based on a mathematical modelling of the 
initial equations. In this paper the results are 
discussed of the solution of some problems in 
boundary-layer theory with the aid of statical 
electro-integrators designed at the Kazakh 
State University [l-3].* 

Using the statical electro-integrators, the 
solution is performed in a grid region step by 
step, which allows one to control the calcula- 
tions, to stop them, or introduce alterations, etc. 

* Statistical electro-integrator, type “C3EI-I” is at 
present produced by Kazakh Council of National Economy. 
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This makes it possible to pass easily from one 
scheme of computation to another, to choose 
optimum variants, to watch the stability of the 
computations, etc. 

The principle of the integrator operation is 
based on mathematical modelling with the 
help of an electric system of differential equa- 
tions written in terms of finite differences. The 
solution is performed in discrete co-ordinates 
and the grid mesh chosen with an eye on the 
solution stability. The integrator (Fig. lj con- 
sists of a number of discrete functional potentio- 
meters of great resolving power. The change of 
equation coefficients is programmed by the 
potentiometers before the computation is started. 
The terminals of the potentiometers are fixed 
on a common panel of commutation. The calcu- 
lation is performed by moving one solving 
element over the points of spatial region 
represented in the integrator by potentials. A 
solving element consists of several resistors 
(sometimes capacitorsj connected in a pre- 

“I fl2 *3 “4 

FIG. 1. Electric circuit of statical electro-integrator. n,, n2, n3 
are functional potentiometers; R, R,, are resistors of solving 

element; ZH, zero galvanometer ; TP, test plug; P, plug. 

defined circuit. The solution is sought on the 
same panel of commutation by the zero-method. 

Some solutions of problems obtained on 
statical electro-integrators are given below. 

2. VISCOUS INCOMPRESSIBLE FLOW AROUND A PLATE 

The problem is written mathematically in the form of the following set of differential equations 
and boundary conditions 

UE+9ELya2u 
ax ay ay2' 

au as o. 
gay= 9 (1) 

U=$=O at y = 0, u = u,, au 0 
ay= 

at y=co. 

The corresponding system of finite difference dimensionless equations is of the form : 

(2) 

-u,,, “1 0 1 
b 

U n,k+l 

Ax =&% c 

&“n-l,k 
I 

- 2un,k + Un+l,k) -; 

c 

&&,(“.-l,k - Un+l,k), 
I 

i=l i=l 

I9 n,k+l = %,k + u&k - Un,k+l, (3) 

where 

U U 
a= n,k+l - um,k 

N ’ 
b = ‘n-Lk - 

N 
n+l,k; 

N = 0401 is the smallest value of the function when the change of the coefficients is taken into 
account. Equations (3) are written allowing for the fact that the region of the variation of the function 
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is divided into two grids. The first is a fixed one with a mesh of Ax # by selected from the stability 
conditions of the solution, the second (mobile) has a mesh of Ax = Ay. 

The equality 

l/l 
b 

V n,k+l - I/n,k= 

c 2+R/R,i , ,(v,-I,, - 2K,k + v,,,,,) - A; 
c 

v:(v,-l,k - v,,,,,) c4) 

i=l i=l 

is valid for the integrator scheme (Fig. 1). 
The comparison of equations (3) and (4) yields the conditions of modelling 

VAX 
dy2= ', ; 

2 + R/R, 
:&E;-& ;&;&; &=A. (5) 

i=l i=l i=l i=l 

Conditions (5) are satisfied on the integrator (before the solution starts) by setting the necessary 
ratio between the resistors of a solving element R/R,,, by programming on the potentiometers the 
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FIG. 2. 
(a) Development of the velocity profile when incompressible viscous fluid is flowing around a plate. Curve 1 

is the initial profile. Profile 5 and the following ones (not shown in the Figure) are similar profiles. 
(b) Comparison of a similar profile obtained by the integrator (points) with that of Blasius (solid curve). 
(c) Similar velocity profiles in boundary layer for water flow around a plate. 1.-T, = WC, T, = 20°C; 

2.-T, = 20°C T, = 80°C. 
(d) Similar velocity profiles in boundary layer for lubricating oil flow around a plate. 1.-T, = 90°C T, = 

50°C; 2.-T, = 50°C T, = 90°C 



functional dep~ndences FI = f(U) and F, = j‘(& U) and by an appropriate se~ectjon of the supply 
current for the potentiometers. 

The results of the solution are presented in Figs. 2fa) and 2(b), Figure 2fa) shows the development 
of the velocity profile up to the onset of similarity. In Fig. Z(b) the curve corresponds to the similar 
velocity profile obtained by Blasius [43, the points correspond to the solution found on the integrator. 

3. UNIFORM LIQIJID FLOW OF VARIABLE VISCOSITY AROUND A PLATE 

Assuming that all the properties except viscosity* are constant, the initial system of equations 
and boundary conditions can be written in the form 

17) 
T = T, at y=O. T = T, at y=“o. 

Equations (6) and (7) in an explicit, finite difference form and solved for the unknown functions, 
will be written : 

3 n,k+l = %,k -+ Un,k - Crts,k+l, 

8 
Ax 1 

n,k+l = --- Ay’ Pr, 1 
- 2en,k -t &P-l,k) 

i=i 

- &,*), (9) 
i=l 

where 

T - r, 
@ET _T’ 

m W 
Pr, = ? (Prandtl number). 

One can write for the integrators : 

V n,k+l = 

+ v,, k - mL1.P - t7n.kX fW 
-. ..~__” _~-_--_ .-- ~III___c-” -_.__.._, __.__-____“--_._-.__..- ,_ 

* fn these cakulations the ~ern~ra~urc dependence of viscosity found exper~mcnta~iy [6f is used. 
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6 

1 1 

“‘- = 2 + RjRo$ c 
$tv.+,,k - 2’v,,k + v,-I,,) + v,,, - @V,-,,k - v,,,). (11) I 

i=1 

We find the conditions of modelling by comparing equations (8) and (lo), (9) and (11) : 

Inequalities 

LXL<L 
U Ay2 Pr, ’ 29 

kl<d 
Ay’u’ 2 (13) 

should obviously be observed (both in this and other cases) to satisfy the stability conditions of 
solution [5]. 

In Fig. 2 (c) are shown similar velocity profiles in a boundary layer formed when hot (curve I) 
and cold (curve 2) plates are in a uniform flow. The point of contraflection of the curve 2 is a specific 
feature of these profiles. Similar curves are given for lubricating oil in Fig. 2(d). In this case the 
velocity profile deformation is still more vividly expressed on a cold plate. Temperature fields are 
calculated for the same temperatures of the plate and how in a boundary layer (Fig. 3a). The com- 
parison of the curves obtained for velocity profiles with those in reference [S) shows satisfactory 
agreement. 

4. PLANE KNCOMPR~SIBLE JET FLOWING OUT OF A NOZZLE OF FINITE D~~NSJON 

The equations and boundary conditions which describe the distribution of submerged plane- 
parallel jet flow out of a flat tube 21 wide with a parabolic initial profile are of the form 

~,U+gE!&Z! av+!!Lo 
ax ay ay ax ay ’ 

at x=0: 
r 

Y<-1, y>+l, u = 0; 
-r<y< $1, u = U,,(l - y2/P), 

at x>O:z=O 
ay 

at y=O 

(14) 

au u=o, -_=o 
aY 

at y=s‘co. 
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FIG. 3. 
(a) Similar temperature profiles in boundary layer for water flow around a plate. I.--T, = 80°C T, = 20°C ; 

2.-i”,, = 20°C 7” = 80°C. 
(b) Development of initial (1) parabolic velocity profile in a jet flowing out of a flat tube (curve 5 represents 

the similar profile). 
(c) Comparison of theoretical similar profile U/U, = - tanh* cp (curve 1) with that calculated by the 

integrator (curve 2). 
(d) Velocity distribution at the outflow from an annular channel along a coaxial cylindrical rod. 1 is the 

initial profile. 5 is profile corresponding to the similar solution. 

On using the methods similar to the ones discussed above, one can find the modelling conditions 
for the integrator and obtain the solution of the system of equations (14). 

In Fig. 3(b) the development of the initial parabolic velocity profile is shown. The comparison 
of the theoretical similar profile (U/V,) = 1 - tanh’ cp [4] and that obtained by the integrator is 
illustrated in Fig. 3(c). 

5. PROPAGATION OF A SEMI-INFINITE JET ALONG A CYLINDER 

The result of the solution of the initial system of equations with appropriate boundary conditions 

~2!!!=, 
(15) 

u=9=0 at y = 0, 
aY 

at y--kc0 
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FIG. 4. 
(a) Velocity profiles (U/U,) at (h&,) = 4 (Pr = 0.72). I.---n = 06; Z.--y1 = 0%; 3.--n = I.0 (the broken 

line represents the theoretical solution for n = 1). 
(b) Velocity profiles (VjV,) at (h,ih,) = t (Pr = @72). I.--n = 0.6; 2.--n = O-8 (the broken line represents 

the theoretical solution for n = 1). 
(c) Enthalpy profiles at (h,/h,) = 4 (Pr = 0.72). I.--n = 0.6; 2.---n 

represents the theoretical solution for n = 1). 
= @8; 3.--n = 1.0 (the broken line 

(d) Enthalpy profiles at (/@I,) = i (Pr = 0.72). I.--n = 06; 2.--n = 0.8 (the broken line represents the 
theoretical solution for n = 1). 

is given in Fig. J(d) which illustrates the development of the initial velocity profile before the onset 
of similarity. 

6. R~WN~~R~ LAYER M ~UMPR~~RLE GAS ON A MOVIlYG FLAW? PLATE 

This problem was studied theoretically for incompressible fluid in papers [6, 7-J In a boundary 
layer of compressible gas on a continuous flat surface the flow is described by solving the dimension- 
less equations 
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where 
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(C and q are Dorodnitsyn variables) with boundary conditions 

CJ = 1, h = ho at r]=O 

u = 0, au 0 
(??=I 

h=l, $=O at q=co. 

The solution is obtained by the methods already described. In Figs. 4(a) and 4(b) the velocity 
profiles UjU~ are shown for various values of the parameter n in the physical plane X, y. Similar 
curves are given for enthalpy in Figs. 4(c) and 4(d). 

As seen from the above examples, the method proposed for the solution of the boundary-layer 
theory problems gives qualitatively correct results which are in most cases, sufficiently close to the 
accurate results obtained by other methods. If necessary the accuracy ofthe solution can be increased 
by changing to a smaller grid-mesh. This can readily be done on the integrator and only an increase 
in the volume of the calculations is involved. 

Thus the application of the mathematical modelling method allows the solution of the initial 
system of partial differential equations for boundary layer to be found, without using any transforma- 
tions to simplify the system. 
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Abstract-Results are given of the numericaf solution of some problems of boundary-layer theory for 
incompressible fluid and compressible gas. By a statical electro-integrator the solutions are obtained to 
the problems of uniform incompressible fluid flow with constant and variable viscosity around a plate; 
of incompressible plane jet overflow from a nozzle of finite dimension; of propagation of semi-infinite 
incompressible fluid jet along a cylinder; and of a boundary layer in compressible gas on a continuous 

moving flat plate. The results are presented in a graphical form. 

Zusammenfassung-Von einigen Problemen der Grenzschichttheorie ftir inkompressible Fltissigkeit und 
kompressibles Gas sind die Ergebnisse einer numerischen Losung angegeben. Mit Hilfe eines Elektroin- 
tegrators wurden die Losungen fti folgende Probleme erhalten: Gleichmiissige, inkompressible Striimung 
urn eine Platte bei konstanter und veranderlicher Zahigkeit ; inkompressibler, ebener Strahlaustritt aus 
einer Diise endlicher Dimension; Fortschreiten eines halbunendlichen, inkompressiblen Fltissigkeits- 
strahls entlang eines Zylinders und Grenzschichtprobleme an einer kontinuierlich bewegten ebenen Platte 

in kompressiblem Gas. Die Ergebnisse sind grafisch dargestellt. 


